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Introduction



Goal

Goal

→ Estimating income/wealth distributions using tax data

→ Producing statistics about income/wealth inequality

• Individual micro-data on taxpayers available in a few countries for

recent years

• 1962-2018 in the U.S.

• 1994-2018 in France

• Problem: tax data often censored

⇒ for most countries and years, only tabulated tax data
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An example of tabulated tax data

Typical tax data

1. Brackets of the income/wealth tax schedule

2. Number of taxpayers per bracket

3. Average income/wealth in the bracket

Income bracket Bracket size Bracket average income

From 0 to 1000 300 000 500

From 1000 to 10 000 600 000 5 000

From 10 000 to 50 000 80 000 30 000

More than 50 000 20 000 200 000

3



The Pareto distribution

Empirical observation: Top income and wealth distributions well

approximated by the Pareto (1896) distribution

• Minimum income x0 > 0

• Linear relationship between log(rank) and log(income):

∀x ≥ x0, logP{X > x} = −α log(x/x0)

• Hence the ”power law”:

∀x ≥ x0, P{X > x} = (x/x0)−α

• α = Pareto coefficient
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Existing interpolation methods

• Pareto interpolation methods exploit this observation

• Typical assumption = exact Pareto distribution within each tax

bracket

→ Kuznets, 1953; Feenberg and Poterba, 1992; Piketty, 2001; Piketty

and Saez, 2003; etc.

Limitations

1. Only valid for the top of the distribution (highest revenues/estates)

2. Imprecise even at the top

3. Don’t exploit all available information

4. Not internally consistent
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Beyond Pareto: Generalized Pareto interpolation

1. Introduce generalized Pareto curves

• characterize power law behavior in a flexible way

• allow to visualize and estimate distributions of income and wealth

2. Develop generalized Pareto interpolation

• empirical method exploiting tabulated tax data that preserves

deviations from strict Paretian behavior

• more precise

• can estimate the entire distribution
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Generalized Pareto Curves:

Definition and Theory



Definition of the generalized Pareto curve

• Consider a Pareto distribution with coefficient α

• Quantile function: Q : p 7→ x0(1− p)−1/α

• Then:
E [X |X > Q(p)]

Q(p)
=

α

α− 1
≡ b

is constant

→ b is the inverted Pareto coefficient

• More generally, define for an arbitrary random variable X :

b(p) =
E [X |X > Q(p)]

Q(p)

→ the function p 7→ b(p) is the generalized Pareto curve
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Generalized Pareto curve of pre-tax national income
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Interpretation

• More flexible definition of power laws definition

→ based on Karamata’s (1930) theory of regular variations

• Two types of distributions, excluding pathological cases:

Power laws Thin tails

Pareto Normal

Student’s t Log-normal

. . . . . .

lim
p→1

b(p) > 1 lim
p→1

b(p) = 1
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Relationship with the quantile function

Proposition

If X positive random variable with quantile function Q, and Pareto

curve b, then:

Q(p) = Q(p̄)
(1− p̄)b(p̄)

(1− p)b(p)
exp

(
−
∫ p

p̄

1

(1− u)b(u)
du

)
.

⇒ Quantile function entirely pinned down by:

1. the Pareto curve
2. a scale factor:

• value of Q at one point p̄

• or average income/wealth
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Generalized Pareto Interpolation



Back to the interpolation problem

Income bracket Bracket size Bracket average income

From 0 to 1000 300 000 500

From 1000 to 10 000 600 000 5 000

From 10 000 to 50 000 80 000 30 000

More than 50 000 20 000 200 000

• Known: Q(pk) and b(pk) for a few percentiles pk

• How to reconstruct the entire distribution based on that

information?
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The naive approach

Naive approach:

1. Interpolate the Pareto curve using the b(pk)’s

2. Determine the scale of the quantile function using one Q(pk0 )

Two problems

1. Won’t be consistent with the Q(pk)’s, k 6= k0

2. No guarantee that Q is increasing
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The interpolation problem

Problem: the interpolation must be constrained so that Q(p) and b(p)

are consistent with the data and with each other

• With x = − log(1− p), define the function:

ϕ(x) = − log

∫ 1

1−e−x

Q(u) du

• ϕ directly related to Q(p) and b(p):{
ϕ(x) = − log(1− p)Q(p)b(p)

ϕ′(x) = 1/b(p)

Reformulation

Initial problem
⇐⇒ Interpolation of ϕ knowing at the interpolation points:

• its value

• its first derivative

+ condition ensuring that Q is increasing

13



Spline interpolation

• Spline: function defined by piecewise polynomials

→ commonly used in interpolation problems

• Cubic splines: piecewise polynomials of degree 3

• Hermite’s basis:

h
(k)
ij (x) =

{
1 if (i , j) = (k , l)

0 otherwise

• Interpolate x ∈ [xk , xk+1] by:

ϕ̂(x) = h00(t)yk+h10(t)(xk+1−xk)sk+h01(t)yk+1+h11(t)(xk+1−xk)sk+1

with t = (x − xk)/(xk+1 − xk) to have:

∀k , ϕ̂(xk) = yk , ϕ̂′(xk) = sk

→ with cubic splines, the yk ’s and the sk ’s determine the interpolant
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Cubic spline interpolation

x

ϕ
(x

)

•

•

•

•

•

4 parameters

2 fixed by ϕ(xk)

+

2 fixed by ϕ′(xk)

6 parameters

3 fixed by ϕ(xk) + 3 fixed by ϕ′(xk)

2n parameters

n fixed by ϕ(xk) + n fixed by ϕ′(xk)
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Quintic spline interpolation (I)

• Need ϕ̂ to be twice continuously differentiable

→ necessary for a continuously differentiable Pareto curve

• Could have ϕ̂ twice differentiable with cubic splines if the sk ’s were

free parameters

• But we already know the function and its first derivative at

interpolation points

⇒ Cubic splines? Not smooth enough

• Quintic splines:

• n extra degrees of freedom

• one extra level of differentiability

• same principle as cubic spline, but applied to the derivative

⇒ 3n parameters, 2n fixed and n free
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Quintic spline interpolation (II)

• Determine the n free parameters by looking for the ”most regular”

curve

• Two equivalent approaches:

1. Enforce continuity of second derivative at the jointures

(+ two boundary conditions)

2. Minimize the curvature of the overall curve:

min

∫ xK

x1

(ϕ̂′′(x))2 dx

→ requires solving a linear system of equations

17



Making sure that the quantiles are increasing

• No guarantee yet that the quantile function is increasing

• Quantile function increasing if and only if:

P̂(x) ≡ ϕ̂′′(x) + ϕ̂′(x)(1− ϕ̂′(x)) > 0

• Derive fairly general sufficient conditions on the parameters of the

splines:

Cargo and Shisha (1966)

If P = c0 + c1X + · · ·+ cnX
n, then:

∀x ∈ [0, 1], min
0≤i≤n

bi ≤ P(x) ≤ max
0≤i≤n

bi

with:

bi =
n∑

r=0

cr

(
i

r

)/(
n

r

)
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Algorithm to obtain an increasing quantile function (I)

Define constrained estimate ϕ̃ as follows:

1. Start with the unconstrained estimate ϕ̂

2. Set ϕ̃′′(xk) = ϕ̃′(xk)(1− ϕ̃′(xk)) if P̂(xk) < 0 to have P̃(xk) ≥ 0 for

all k

3. Check whether P̃(x) ≥ 0 over each [xk , xk+1]
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Algorithm to obtain an increasing quantile function (II)

4. If not, choose xk < x∗1 < . . . < x∗L < xk+1 and define ϕ̃ as:

ϕ̃k(x) =


ϕ∗0(x) if xk ≤ x < x∗1
ϕ∗l (x) if x∗l ≤ x < x∗l+1

ϕ∗L(x) if x∗l ≤ x < xk+1

with ϕ∗l ’s quintic splines such that:

ϕ∗l (x∗l ) = y∗l , (ϕ∗l )′(x∗l ) = s∗l , (ϕ∗l )′′(x∗l ) = a∗l

ϕ∗l (x∗l+1) = y∗l+1, (ϕ∗l )′(x∗l+1) = s∗l+1, (ϕ∗l )′′(x∗l+1) = a∗l+1

+ boundary constraints at xk and xk+1

→ y∗l , s∗l , a∗l (1 ≤ l ≤ L) parameters to be adjusted
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Algorithm to obtain an increasing quantile function (III)

5. Set y∗l , s∗l , a∗l to minimize the L2 distance to unconstrained

estimate ϕ̂ subject to positivity constraints:

min
y∗
l ,s

∗
l ,a

∗
l

1≤l≤L

∫ xk+1

xk

(ϕ̂k(x)− ϕ̃k(x))2dx

subject to:

bli ≥ 0 (0 ≤ i ≤ 8, 0 ≤ l ≤ L)
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Making sure the quantiles are increasing
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Extrapolation Beyond the Last

Threshold



Extrapolation beyond the last threshold

p = 1p

b
(p

)

•

• • •

So far, only interpolation between

the thresholds of the tax schedule

Now, extrapolation beyond

the last threshold
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Extrapolation beyond the last threshold (I)

• Generalized Pareto distribution

P(X ≤ x) = GPDµ,σ,ξ(x) =

{
1−

(
1 + ξ x−µ

σ

)−1/ξ
for ξ 6= 0

1− e−(x−µ)/σ for ξ = 0

• Asymptotic Pareto coefficient:

lim
p→1

b(p) = 1/(1− ξ)

→ If µξ − σ = 0, strict power law

→ If µξ − σ > 0 (resp. <), b(p) converges from below (resp. above)

• Assume that the distribution follows a GPD for p > pK

• Three parameters, identified using:

1. last threshold

2. last inverted Pareto coefficient

3. differentiability condition at the jointure
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Empirical Test



Alternative method #1

Method M1: Piecewise constant b(p)

• Assume b(p) constant within each bracket

• Not entirely consistent with the input data

• Not always self-consistent

See Piketty (2001), Piketty and Saez (2003)
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Alternative method #2

Method M2: Piecewise Pareto distribution

• Use log(1− F (x)) = A− B log(x) within each bracket

• Only use threshold information, not shares

See Kuznet (1953), Feenberg and Poterba (1992)
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Alternative method #3

Method M3: Mean-split histogram

• Divide each bracket in two parts

• Define a uniform distribution on each part

• The breakpoint is the mean income inside the bracket
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Test dataset

• Data from France and the United States coming from exhaustive or

quasi-exhaustive micro-data:

• France: Garbinti, Goupille-Lebret and Piketty (2016)

• United States: Piketty, Saez and Zucman (2016)

• Create a tabulation p = 10%, 50%, 90%, 99%

• Compare estimated and actual value
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U.S. pre-tax national income, 2010: Generalized Pareto curve
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U.S. pre-tax national income, P75/average
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U.S. pre-tax national income, top 25% share
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U.S. pre-tax national income, top 25% share (2000–2014)
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Comparison table

mean percentage gap between estimated and observed

values

M0 M1 M2 M3

United States

(1962–2014)

Top 70% share
0.059% 2.3% 6.4% 0.054%

(ref.) (×38) (×109) (×0.92)

Top 25% share
0.093% 3% 3.8% 0.54%

(ref.) (×32) (×41) (×5.8)

Top 5% share
0.058% 0.84% 4.4% 0.83%

(ref.) (×14) (×76) (×14)

P30/average
0.43% 55% 29% 1.4%

(ref.) (×125) (×67) (×3.3)

P75/average
0.32% 11% 9.9% 5.8%

(ref.) (×35) (×31) (×18)

P95/average
0.3% 4.4% 3.6% 1.3%

(ref.) (×15) (×12) (×4.5)
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Extrapolation: Generalized Pareto curve
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Extrapolation: Comparison table

→ Estimation of the top 1% from the top 10% and the top 5%

mean percentage gap between estimated

and observed values

M0 M1 M2

United States

(1962–2014)

Top 1% share
0.78% 5.2% 40%

(ref.) (×6.7) (×52)

P99/average
1.8% 8.4% 13%

(ref.) (×4.7) (×7.2)

35



Comparison with a survey

What precision can we expect using subsamples of the data?

• U.S. distribution of pre-tax national income

• Mean percentage gap on the top 5% share:

1. Generalized Pareto interpolation: 0.058%

(tabulation: p = 10%, 50%, 90%, 99%)

2. Sample of 107 out of 108: 0.44%

mean percentage gap between estimated and observed values for a survey with

simple random sampling and sample size n out of 108

n = 103 n = 104 n = 105 n = 106 n = 107 n = 108

Top 5% share 13.40% 6.68% 3.34% 1.34% 0.44% 0%

Top 1% share 27.54% 14.51% 7.39% 2.98% 0.97% 0%

Top 0.1% share 51.25% 33.08% 17.89% 7.41% 2.43% 0%
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France pre-tax national income, 2006: Density comparison
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Error Estimation



Which error?

• Two possible definitions of ”the error”

1. the error with respect to the actual population value

→ we try to estimate the income/wealth in the population,

approximated by a continuous distribution

2. the error with respect to the underlying statistical model

→ we only observe the realization of some underlying statistical model

that we try to estimate

• In practice, sampling error and approximation error are negligible

⇒ errors 1 and 2 ' same magnitude

• To fix ideas, focus on the second kind of error
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Two components

• What if the population was infinite?

→ there would still be an error because the actual distribution doesn’t

match our interpolation exactly

→ misspecification error

• What if the actual distribution matched the functional forms we use

to interpolate?

→ there would still be an error due to sampling variability

→ sampling error

• Total error = misspecification error + sampling error

• For simplicity, focus on unconstrained estimation
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Sampling error

1. Finite variance case:

• Standard approach (CLT-type results + delta method)

• Asymptotic normality

2. Infinite variance case:

• Generalized CLT (Gnedenko and Kolmogorov, 1968)

• Convergence to a stable distribution

⇒ negligible sampling error in both cases
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Misspecification error: theory

• Explicit expression for this error (Peano kernel theorem)

misspecification error =

∫ xK

x1

ε(x , t)ϕ′′′(t)dt

• Depends on two elements:

1. the interpolation percentiles

2. ϕ′′′

• ϕ′′′ ' residual

→ captures all the features of the distribution not accounted for by the

interpolation method
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Misspecification error: applications

• Estimate ϕ′′′ when we have access to micro-data

• Plug-in these estimates in the error formula to:

1. Get bounds on the error in the general case

2. Solve the inverse problem: how to place thresholds optimally?
optimal thresholds
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Conclusion

• Generalized Pareto curves

1. characterize and visualize the distributions of income or wealth

2. estimate those distributions

• Generalized Pareto interpolation

1. largely outperforms commonly used methods

2. method applied to construct the World Inequality Database

3. R package available:

� wid.world/gpinter

• What mechanisms?

1. random growth models? can’t account for the increasing inequality

at the top
2. simple deviations from them: the very top experiences higher growth

and/or more risk

⇒ the processes generating income and wealth distributions are not fully

scale invariant
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Thank you!
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Additional slides



Power laws: Karamata’s (1930) definition

• For some α, write 1− F (x) as:

1− F (x) = P{X > x} = L(x)x−α

• X is an asymptotic power law if L is slowly varying:

∀λ > 0 lim
x→+∞

L(λx)

L(x)
= 1

• Includes cases where L(x)→ constant, but also (say)

L(x) = (log x)β , β ∈ R.

back
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Thin tails: rapidly varying functions

• Otherwise, 1− F may be rapidly varying, meaning:

∀λ > 1 lim
x→+∞

1− F (λx)

1− F (x)
= 0

• That corresponds to thin tailed distributions:

• Normal

• Log-normal

• Exponential

• . . .

back
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A simple typology of distributions

Category Examples b(p) behavior

Power laws

Pareto
lim
p→1

b(p) > 1Student’s t

Dagum

Thin tails

Normal
lim
p→1

b(p) = 1Log-normal

Exponential

Pathological cases none
oscillates indefinitely

(no convergence)

back
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Optimal position of thresholds

3 brackets 4 brackets 5 brackets 6 brackets 7 brackets

optimal placement

of thresholds

10.0% 10.0% 10.0% 10.0% 10.0%

68.7% 53.4% 43.0% 36.8% 32.6%

95.2% 83.4% 70.4% 60.7% 53.3%

99.9% 97.1% 89.3% 80.2% 71.8%

99.9% 98.0% 93.1% 86.2%

99.9% 98.6% 95.4%

99.9% 98.9%

99.9%

maximum relative

error on top shares
0.91% 0.32% 0.14% 0.08% 0.05%

back
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