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Introduction



Goal

— Estimating income/wealth distributions using tax data

— Producing statistics about income/wealth inequality

e Individual micro-data on taxpayers available in a few countries for
recent years

e 1062-2018 in the U.S.
e 1994-2018 in France

e Problem: tax data often censored

= for most countries and years, only tabulated tax data



An example of tabulated tax data

Typical tax data

1. Brackets of the income/wealth tax schedule
2. Number of taxpayers per bracket

3. Average income/wealth in the bracket

Income bracket Bracket size  Bracket average income
From 0 to 1000 300 000 500
From 1000 to 10 000 600 000 5 000
From 10 000 to 50 000 80 000 30 000

More than 50 000 20 000 200 000




The Pareto distribution

Empirical observation: Top income and wealth distributions well
approximated by the Pareto (1896) distribution

e Minimum income xg > 0

e Linear relationship between log(rank) and log(income):
Vx > xp, logP{X > x} = —alog(x/x0)
e Hence the "power law":
Vx 2 xo, P{X > x} = (x/x0)""

e o = Pareto coefficient



Existing interpolation methods

e Pareto interpolation methods exploit this observation

e Typical assumption = exact Pareto distribution within each tax
bracket

— Kuznets, 1953; Feenberg and Poterba, 1992; Piketty, 2001; Piketty
and Saez, 2003; etc.

Limitations

1. Only valid for the top of the distribution (highest revenues/estates)
2. Imprecise even at the top

3. Don't exploit all available information
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. Not internally consistent



Beyond Pareto: Generalized Pareto interpolation

1. Introduce generalized Pareto curves

e characterize power law behavior in a flexible way

e allow to visualize and estimate distributions of income and wealth
2. Develop generalized Pareto interpolation

e empirical method exploiting tabulated tax data that preserves

deviations from strict Paretian behavior
e more precise

e can estimate the entire distribution



Generalized Pareto Curves:
Definition and Theory



Definition of the generalized Pareto curve

Consider a Pareto distribution with coefficient «
—1/a

Quantile function: Q : p — xo(1 — p)

e Then:
E[X|X > Q(p)] o

) a-1 "

is constant

— b is the inverted Pareto coefficient
e More generally, define for an arbitrary random variable X:

TPELLELD)

— the function p — b(p) is the generalized Pareto curve



Generalized Pareto curve of pre-tax national income

Year 2010

— = France — United States
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inverted Pareto coefficient b(p)




Interpretation

e More flexible definition of power laws

— based on Karamata's (1930) theory of regular variations

e Two types of distributions, excluding pathological cases:

Power laws Thin tails
Pareto Normal
Student’s t Log-normal
lim b(p) > 1 lim b(p) =1

p—1 p—1




Relationship with the quantile function

Proposition

If X positive random variable with quantile function Q, and Pareto
curve b, then:

(- p)b(p) P
Qp) = QY= )p(p) P (‘/ - u)b(u)d“) |

p

= Quantile function entirely pinned down by:

1. the Pareto curve
2. a scale factor:

e value of Q at one point p
e or average income/wealth
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Relationship with the quantile function

Proposition

If X positive random variable with quantile function @, and Pareto
curve b, then:

= Quantile function entirely pinned down by:

1. the Pareto curve
2. a scale factor:

e value of Q at one point p
e or average income/wealth
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Generalized Pareto Interpolation



Back to the interpolation problem

Income bracket Bracket size  Bracket average income
From 0 to 1000 300 000 500
From 1000 to 10 000 600 000 5 000
From 10 000 to 50 000 80 000 30 000
More than 50 000 20 000 200 000

e Known: Q(px) and b(px) for a few percentiles py

e How to reconstruct the entire distribution based on that
information?
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The naive approach

Naive approach:

1. Interpolate the Pareto curve using the b(pk)'s

2. Determine the scale of the quantile function using one Q(px,)

Two problems

1. Won't be consistent with the Q(pk)'s, k # ko

2. No guarantee that @ is increasing
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The interpolation problem

Problem: the interpolation must be constrained so that Q(p) and b(p)
are consistent with the data and with each other

e With x = —log(1 — p), define the function:
1
p0) = ~log [ Q(u)du
l—e—%

e ¢ directly related to Q(p) and b(p):

¢(x) = —log(1 — p)Q(p)b(p)
¢'(x) =1/b(p)

Reformulation

Initial problem
<= Interpolation of ¢ knowing at the interpolation points:

e its value
e its first derivative

+ condition ensuring that Q is increasing
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Spline interpolation

e Spline: function defined by piecewise polynomials

— commonly used in interpolation problems
e Cubic splines: piecewise polynomials of degree 3

e Hermite's basis:

h(k)(X): { 1if (iv./.):(kvl)

0 otherwise
e Interpolate x € [xk, xk+1] by:
@(x) = hoo(t)yk+h1o(t)(Xks1—xk)Sk+ho1 (1) Yir1+hia () (X1 —Xk ) Sk1
with t = (x — xk)/(Xk+1 — Xk) to have:
Yk, @0a) =y P () = sk
— with cubic splines, the yx's and the si's determine the interpolant
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Cubic spline interpolation




Cubic spline interpolation




Cubic spline interpolation




Cubic spline interpolation

4 parameters
2 fixed by p(xx) °

+
2 fixed by ¢’ (xx)




Cubic spline interpolation




Cubic spline interpolation




Cubic spline interpolation

6 parameters
3 fixed by p(xk) + 3 fixed by ¢’ (xk)




Cubic spline interpolation

2n parameters p

n fixed by p(xx) + n fixed by ¢'(xk)
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Quintic spline interpolation

Need ¢ to be twice continuously differentiable

— necessary for a continuously differentiable Pareto curve

Could have ¢ twice differentiable with cubic splines if the si's were
free parameters

But we already know the function and its first derivative at
interpolation points

= Cubic splines? Not smooth enough

Quintic splines:
e n extra degrees of freedom
e one extra level of differentiability
e same principle as cubic spline, but applied to the derivative
= 3n parameters, 2n fixed and n free
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Quintic spline interpolation (

e Determine the n free parameters by looking for the "most regular”
curve

e Two equivalent approaches:
1. Enforce continuity of second derivative at the jointures
(+ two boundary conditions)
2. Minimize the curvature of the overall curve:

it / (8" () dx

X1

— requires solving a linear system of equations
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Making sure that the quantiles are increasing

e No guarantee yet that the quantile function is increasing

e Quantile function increasing if and only if:

P(x) = @"(x) + ¢'(x)(1 = ¢'(x)) > 0

e Derive fairly general sufficient conditions on the parameters of the
splines:

Cargo and Shisha (1966)
If P=cy+ca X+ -+ c,X" then:

Vx € [0,1], oT‘ig bi < P(x) < Jmax b;

with:
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Algorithm to obtain an increasing quantile function (1)

Define constrained estimate ¢ as follows:

1. Start with the unconstrained estimate ¢

2. Set &"(x) = & (x)(1 — @' (xx)) if P(xx) <0 to have P(x;) > 0 for
all k

3. Check whether P(x) > 0 over each [xk, Xk11]
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Algorithm to obtain an increasing quantile function (I1)

4. If not, choose x;, < x{" < ... < x/ < Xk41 and define ¢ as:
wp(x)  ifxk < x < X
Gr(x) =S ¢f(x) ifx <x<xfy
ei(x) if X < x < Xpq1
with ¢}'s quintic splines such that:
ei(x) =y (@) () =s (@)'(x) =47

@7 (Xi41) = Vit (997)/(Xl*+1) = S/41s (WT)//(X/*H) = aj
+ boundary constraints at xx and xx1

— vy s, af (1 <1< L) parameters to be adjusted
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Algorithm to obtain an increasing quantile function (l11)

5. Set y/', s/, aj to minimize the £? distance to unconstrained
estimate ¢ subject to positivity constraints:

min / " (Bel) — Bel))Rex

ok %
Yi 551 »4;

subject to:
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Making sure the quantiles are increasing
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Making sure the quantiles are increasing




Making sure the quantiles are increasing
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Extrapolation Beyond the Last
Threshold




Extrapolation beyond the last threshold

So far, only interpolation between

the thresholds of the tax schedule




Extrapolation beyond the last threshold

= Now, extrapolation beyondg
I the last threshold :
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Extrapolation beyond the last threshold (1)

e Generalized Pareto distribution

1- (162" fore#£0

P(X <x) = GPDM,U,&(X) = { 1 — e—(x-m)/o for £ =0

e Asymptotic Pareto coefficient:
lim b(p) = 1/(1— €)
— If u& — o =0, strict power law
— If p& — o >0 (resp. <), b(p) converges from below (resp. above)
e Assume that the distribution follows a GPD for p > px
e Three parameters, identified using:

1. last threshold
2. last inverted Pareto coefficient
3. differentiability condition at the jointure

24



Empirical Test




Alternative method #1

Method M1: Piecewise constant b(p)

e Assume b(p) constant within each bracket
e Not entirely consistent with the input data

e Not always self-consistent

See Piketty (2001), Piketty and Saez (2003)
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Alternative method #2

Method M2: Piecewise Pareto distribution

e Use log(1 — F(x)) = A — Blog(x) within each bracket

e Only use threshold information, not shares

See Kuznet (1953), Feenberg and Poterba (1992)
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Alternative method #3

Method M3: Mean-split histogram

e Divide each bracket in two parts
e Define a uniform distribution on each part

e The breakpoint is the mean income inside the bracket
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Test dataset

e Data from France and the United States coming from exhaustive or
quasi-exhaustive micro-data:

e France: Garbinti, Goupille-Lebret and Piketty (2016)
e United States: Piketty, Saez and Zucman (2016)

e Create a tabulation p = 10%, 50%, 90%, 99%

e Compare estimated and actual value
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inverted Pareto coefficient b(p)

MO

M1

3.254
3.00 1
2.75
2.50 1
2.254

8259
3.00 1
2.754
2.50 1

2.25 4

- = data

— estimated
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U.S. pre-tax national income, P75/average

P75/average

1960 1970 1980 1990 2000 2010
year

—— data B M0 4~ M1 —=¢ M2 —$- M3
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U.S. pre-tax national income, top 25% share

top 25% share

70%

65% -
60% o
55% o
1960 1970 1980 1990 2000 2010
year

—— data 8- M0 &~ M1 = M2 - M3
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. pre-tax national income, top 25% share (2000-2014)

68% o

67%

66%

top 25% share

65% -

64% A

2000 2005 2010
year

—— data 8- M0 &= M1 = M2 - M3
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Comparison table

mean percentage gap between estimated and observed

values
MO0 M1 M2 M3
.0599 .39 6.4 0.0549
Top 70% share B3 280 A %
(ref.) (x38) (x109) (x0.92)
0, 0, . 0, . 40
Top 25% share 0.093% 3% 3.8% 0.54%
(ref.) (x32) (x41) (x5.8)
. 9 .849 4.49 .839
Top 5% share 0.058% 0.84% % 0.83%
United States (ref.) (x14) (x76) (x14)
(1962-2014) 0.43% 55% 29% 1.4%
P30/average
(ref.) (x125) (x67) (x3.3)
.329 119 9.99 5.8Y
P75/average B L % %
(ref.) (x35) (x31) (x18)
.39 49 3.69 1.39
P95 /average W e /o %
(ref.) (x15) (x12) (x4.5)
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Extrapolati Generalized Pareto curve

United States, 2014

3.14
. . ]

estimation ]
on) of
2 3.1 — - extrapolation — interpolation of
Q q
= )
5 2.9 o
L2 297 [ data
9 o excluded e included
o
o
o
(o]
[a
el
@
£
o
>
=

0.90 0.92 0.94 0.96 0.98 1.00
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Extrapolation: Comparison table

— Estimation of the top 1% from the top 10% and the top 5%

mean percentage gap between estimated
and observed values

MO M1 M2
0.78% 5.2% 40%
Top 1% sh
United States 99 s SIETC (ref.) (x6.7) (x52)
(e 1.8% 8.4% 13%
P99 /average
(ref) (x4.7) (x7.2)
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Comparison with a survey

What precision can we expect using subsamples of the data?

e U.S. distribution of pre-tax national income

e Mean percentage gap on the top 5% share:
1. Generalized Pareto interpolation: 0.058%
(tabulation: p = 10%, 50%, 90%, 99%)
2. Sample of 107 out of 10%: 0.44%

mean percentage gap between estimated and observed values for a survey with
simple random sampling and sample size n out of 108

n=103 n=10* n=10° n=10° n=10" n=10°

Top 5% share 13.40% 6.68% 3.34% 1.34% 0.44% 0%
Top 1% share 27.54% 14.51% 7.39% 2.98% 0.97% 0%
Top 0.1% share 51.25% 33.08% 17.89% 7.41% 2.43% 0%
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France pre-tax national income, 2006: Density comparison

© — data
-~ estimated
< -
3 o
C
[}
>
o
£ -
o -
T T T T T T
0 20000 40000 60000 80000 100000
income

(tabulation: p = 10%, 30%, 50%, 90%, 99%)
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Error Estimation




Which error?

e Two possible definitions of "the error”
1. the error with respect to the actual population value

— we try to estimate the income/wealth in the population,
approximated by a continuous distribution

2. the error with respect to the underlying statistical model

— we only observe the realization of some underlying statistical model
that we try to estimate

e In practice, sampling error and approximation error are negligible

= errors 1 and 2 ~ same magnitude

e To fix ideas, focus on the second kind of error
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Two components

What if the population was infinite?

— there would still be an error because the actual distribution doesn't
match our interpolation exactly
— misspecification error

What if the actual distribution matched the functional forms we use
to interpolate?

— there would still be an error due to sampling variability

— sampling error

e Total error = misspecification error 4+ sampling error

For simplicity, focus on unconstrained estimation
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Sampling error

1. Finite variance case:

e Standard approach (CLT-type results + delta method)
e Asymptotic normality

2. Infinite variance case:

e Generalized CLT (Gnedenko and Kolmogorov, 1968)
e Convergence to a stable distribution

= negligible sampling error in both cases
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e Explicit expression for this error (Peano kernel theorem)

XK
misspecification error:/ e(x, t)¢" (t)dt
X1
e Depends on two elements:

1. the interpolation percentiles
2 (,D/N

e " ~ residual

— captures all the features of the distribution not accounted for by the
interpolation method
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applications

e Estimate ¢ when we have access to micro-data
e Plug-in these estimates in the error formula to:

1. Get bounds on the error in the general case
2. Solve the inverse problem: how to place thresholds optimally?

» optimal thresholds
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Conclusion

e Generalized Pareto curves

1. characterize and visualize the distributions of income or wealth
2. estimate those distributions
e Generalized Pareto interpolation
1. largely outperforms commonly used methods
2. method applied to construct the World Inequality Database
3. R package available:
1> wid.world/gpinter

e What mechanisms?

1. random growth models? can't account for the increasing inequality

at the top
2. simple deviations from them: the very top experiences higher growth
and/or more risk
= the processes generating income and wealth distributions are not fully
scale invariant
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Thank youl!



Additional slides




Power laws: Karamata’s (1930) definition

e For some a, write 1 — F(x) as:
1-F(x)=P{X >x} =L(x)x" ¢

e X is an asymptotic power law if L is slowly varying:

YA >0 jim LX)

= Il
x—+oo L(x)

e Includes cases where L(x) — constant, but also (say)
L(x) = (logx)?, B € R.
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Thin tails: rapidly varying functions

e Otherwise, 1 — F may be rapidly varying, meaning:

VA>1 lim L()\X) =0
x—+o0 1 — F(x)
e That corresponds to thin tailed distributions:
e Normal
e Log-normal
e Exponential

45



A simple typology of distributions

Category Examples b(p) behavior
Pareto
Power laws Student’s t lim b(p) > 1
p—1
Dagum
Normal
nltai li =1l
Thin tails Log-normal p[?l b(p)
Exponential

) oscillates indefinitely
Pathological cases none
(no convergence)
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Optimal position of thresholds

3 brackets 4 brackets 5 brackets 6 brackets 7 brackets

10.0% 10.0% 10.0% 10.0% 10.0%

68.7% 53.4% 43.0% 36.8% 32.6%

95.2% 83.4% 70.4% 60.7% 53.3%

optimal placement 99.9% 97.1% 89.3% 80.2% 71.8%
of thresholds 99.9% 98.0% 93.1% 86.2%
99.9% 98.6% 95.4%

99.9% 98.9%

99.9%

maximum relative 0.91% 0.32% 0.14% 0.08% 0.05%

error on top shares
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