Generalized Pareto Curves

Theory and Applications

Juliette Fournier 1 (joint with Thomas Blanchet 2 and Thomas Piketty $^2)$ April 5, 2018

 $^{1}\mathsf{MIT}$

²Paris School of Economics

- 1. Introduction
- 2. Generalized Pareto Curves: Definition and Theory
- 3. Generalized Pareto Interpolation
- 4. Extrapolation Beyond the Last Threshold
- 5. Empirical Test
- 6. Error Estimation

Introduction

Goal

- $\rightarrow\,$ Estimating income/wealth distributions using tax data
- \rightarrow Producing statistics about income/wealth inequality
 - Individual micro-data on taxpayers available in a few countries for recent years
 - 1962-2018 in the U.S.
 - 1994-2018 in France
 - Problem: tax data often censored
 - $\Rightarrow\,$ for most countries and years, only tabulated tax data

Typical tax data

- 1. Brackets of the income/wealth tax schedule
- 2. Number of taxpayers per bracket
- 3. Average income/wealth in the bracket

Income bracket	Bracket size	Bracket average income
From 0 to 1000	300 000	500
From 1000 to 10 000	600 000	5 000
From 10 000 to 50 000	80 000	30 000
More than 50 000	20 000	200 000

Empirical observation: Top income and wealth distributions well approximated by the Pareto (1896) distribution

- Minimum income $x_0 > 0$
- Linear relationship between log(rank) and log(income):

$$\forall x \ge x_0, \quad \log \mathbb{P}\{X > x\} = -\alpha \log(x/x_0)$$

• Hence the "power law":

$$\forall x \ge x_0, \quad \mathbb{P}\{X > x\} = (x/x_0)^{-\alpha}$$

• $\alpha =$ Pareto coefficient

Existing interpolation methods

- Pareto interpolation methods exploit this observation
- Typical assumption = exact Pareto distribution within each tax bracket
 - $\rightarrow\,$ Kuznets, 1953; Feenberg and Poterba, 1992; Piketty, 2001; Piketty and Saez, 2003; etc.

Limitations

- 1. Only valid for the top of the distribution (highest revenues/estates)
- 2. Imprecise even at the top
- 3. Don't exploit all available information
- 4. Not internally consistent

1. Introduce generalized Pareto curves

- characterize power law behavior in a flexible way
- allow to visualize and estimate distributions of income and wealth

2. Develop generalized Pareto interpolation

- empirical method exploiting tabulated tax data that preserves deviations from strict Paretian behavior
- more precise
- can estimate the entire distribution

Generalized Pareto Curves: Definition and Theory

Definition of the generalized Pareto curve

- Consider a Pareto distribution with coefficient $\boldsymbol{\alpha}$
- Quantile function: $Q: p \mapsto x_0(1-p)^{-1/\alpha}$
- Then:

$$\frac{\mathbb{E}\left[X|X > Q(p)\right]}{Q(p)} = \frac{\alpha}{\alpha - 1} \equiv b$$

is constant

 \rightarrow *b* is the **inverted Pareto coefficient**

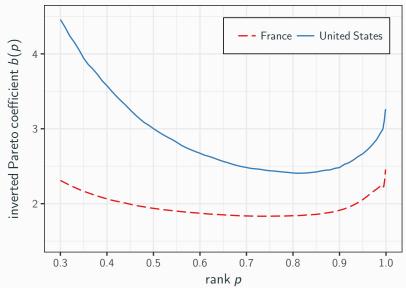
• More generally, define for an arbitrary random variable X:

$$b(p) = rac{\mathbb{E}\left[X|X > Q(p)
ight]}{Q(p)}$$

 \rightarrow the function $p \mapsto b(p)$ is the generalized Pareto curve

Generalized Pareto curve of pre-tax national income

Year 2010



- More flexible definition of power laws definition
 - ightarrow based on Karamata's (1930) theory of regular variations
- Two types of distributions, excluding pathological cases:

Power laws	Thin tails
Pareto	Normal
Student's <i>t</i>	Log-normal
$\lim_{\rho\to 1} b(\rho) > 1$	$\lim_{p\to 1} b(p) = 1$

Proposition

If X positive random variable with quantile function Q, and Pareto curve b, then:

$$Q(p) = Q(\bar{p}) \frac{(1-\bar{p})b(\bar{p})}{(1-p)b(p)} \exp\left(-\int_{\bar{p}}^{p} \frac{1}{(1-u)b(u)} \mathrm{d}u\right).$$

- $\Rightarrow\,$ Quantile function entirely pinned down by:
 - 1. the Pareto curve
 - 2. a scale factor:
 - value of Q at one point \bar{p}
 - or average income/wealth

Proposition

If X positive random variable with quantile function Q, and Pareto curve b, then:

$$Q(p) = Q(\bar{p}) \frac{(1-\bar{p})b(\bar{p})}{(1-p)b(p)} \exp\left(-\int_{\bar{p}}^{p} \frac{1}{(1-u)b(u)} \mathrm{d}u\right).$$

- $\Rightarrow\,$ Quantile function entirely pinned down by:
 - 1. the Pareto curve
 - 2. a scale factor:
 - value of Q at one point \bar{p}
 - or average income/wealth

Proposition

If X positive random variable with quantile function Q, and Pareto curve b, then:

$$Q(p) = \frac{Q(\bar{p})}{(1-p)b(p)} \exp\left(-\int_{\bar{p}}^{p} \frac{1}{(1-u)b(u)} \mathrm{d}u\right).$$

 $\Rightarrow\,$ Quantile function entirely pinned down by:

- 1. the Pareto curve
- 2. a scale factor:
 - value of Q at one point \bar{p}
 - or average income/wealth

Generalized Pareto Interpolation

Income bracket	Bracket size	Bracket average income
From 0 to 1000	300 000	500
From 1000 to 10 000	600 000	5 000
From 10 000 to 50 000	80 000	30 000
More than 50 000	20 000	200 000

- Known: $Q(p_k)$ and $b(p_k)$ for a few percentiles p_k
- How to reconstruct the entire distribution based on that information?

Naive approach:

- 1. Interpolate the Pareto curve using the $b(p_k)$'s
- 2. Determine the scale of the quantile function using one $Q(p_{k_0})$

Two problems

- 1. Won't be consistent with the $Q(p_k)$'s, $k \neq k_0$
- 2. No guarantee that Q is increasing

The interpolation problem

Problem: the interpolation must be constrained so that Q(p) and b(p) are consistent with the data and with each other

• With $x = -\log(1-p)$, define the function:

$$\varphi(x) = -\log \int_{1-e^{-x}}^{1} Q(u) \, \mathrm{d} u$$

• φ directly related to Q(p) and b(p):

$$\left\{ egin{array}{l} arphi(x) = -\log(1-p)Q(p)b(p) \ arphi'(x) = 1/b(p) \end{array}
ight.$$

Reformulation

Initial problem \iff Interpolation of φ knowing at the interpolation points: • its value

• its first derivative

+ condition ensuring that Q is increasing

Spline interpolation

- Spline: function defined by piecewise polynomials
 → commonly used in interpolation problems
- Cubic splines: piecewise polynomials of degree 3
- Hermite's basis:

$$h_{ij}^{(k)}(x) = \begin{cases} 1 & \text{if } (i,j) = (k,l) \\ 0 & \text{otherwise} \end{cases}$$

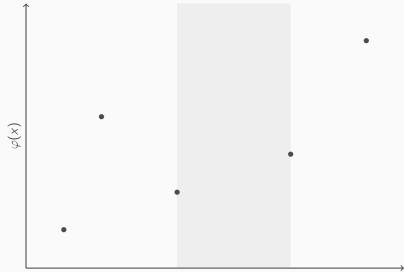
• Interpolate $x \in [x_k, x_{k+1}]$ by:

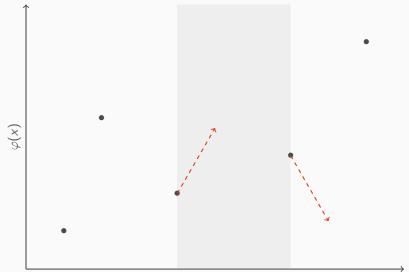
 $\hat{\varphi}(x) = h_{00}(t)y_k + h_{10}(t)(x_{k+1} - x_k)s_k + h_{01}(t)y_{k+1} + h_{11}(t)(x_{k+1} - x_k)s_{k+1}$

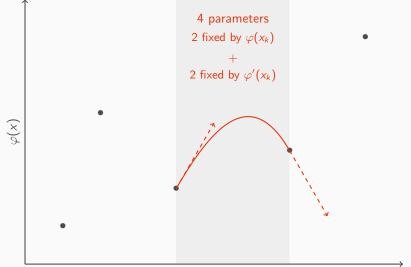
with $t = (x - x_k)/(x_{k+1} - x_k)$ to have:

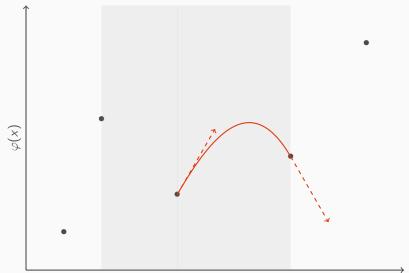
$$orall k, \quad \hat{arphi}(x_k) = y_k, \quad \hat{arphi}'(x_k) = s_k$$

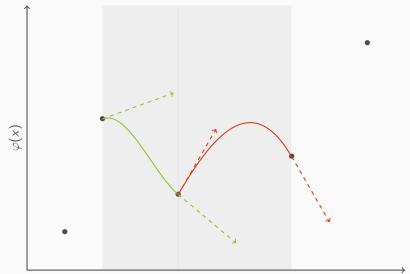
 \rightarrow with cubic splines, the y_k 's and the s_k 's determine the interpolant



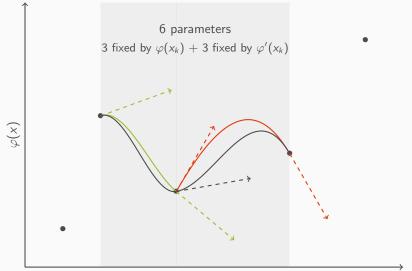


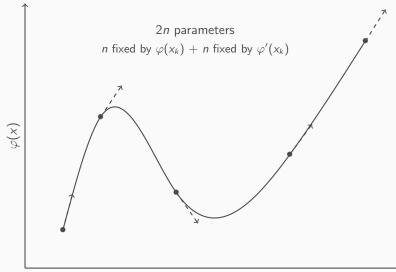






Х





- Need $\hat{\varphi}$ to be *twice* continuously differentiable
 - $\rightarrow\,$ necessary for a continuously differentiable Pareto curve
- Could have $\hat{\varphi}$ twice differentiable with cubic splines if the s_k 's were free parameters
- But we *already know* the function and its first derivative at interpolation points
 - \Rightarrow Cubic splines? Not smooth enough
- Quintic splines:
 - *n* extra degrees of freedom
 - one extra level of differentiability
 - same principle as cubic spline, but applied to the derivative
 - \Rightarrow 3*n* parameters, 2*n* fixed and *n* free

Quintic spline interpolation (II)

- Determine the *n* free parameters by looking for the "most regular" curve
- Two equivalent approaches:
 - 1. Enforce continuity of **second** derivative at the jointures (+ two boundary conditions)
 - 2. Minimize the curvature of the overall curve:

$$\min \int_{x_1}^{x_K} (\hat{\varphi}''(x))^2 \,\mathrm{d}x$$

 $\rightarrow\,$ requires solving a linear system of equations

Making sure that the quantiles are increasing

- No guarantee yet that the quantile function is increasing
- Quantile function increasing if and only if:

$$\hat{P}(x)\equiv\hat{arphi}''(x)+\hat{arphi}'(x)(1-\hat{arphi}'(x))>0$$

• Derive fairly general sufficient conditions on the parameters of the splines:

Cargo and Shisha (1966) If $P = c_0 + c_1 X + \dots + c_n X^n$, then:

$$\forall x \in [0,1], \quad \min_{0 \le i \le n} b_i \le P(x) \le \max_{0 \le i \le n} b_i$$

with:

$$b_i = \sum_{r=0}^n c_r \binom{i}{r} / \binom{n}{r}$$

Define constrained estimate $\tilde{\varphi}$ as follows:

- 1. Start with the unconstrained estimate $\hat{\varphi}$
- 2. Set $\tilde{\varphi}''(x_k) = \tilde{\varphi}'(x_k)(1 \tilde{\varphi}'(x_k))$ if $\hat{P}(x_k) < 0$ to have $\tilde{P}(x_k) \ge 0$ for all k
- 3. Check whether $\tilde{P}(x) \ge 0$ over each $[x_k, x_{k+1}]$

4. If not, choose $x_k < x_1^* < \ldots < x_L^* < x_{k+1}$ and define $\tilde{\varphi}$ as:

$$\tilde{\varphi}_{k}(x) = \begin{cases} \varphi_{0}^{*}(x) & \text{if } x_{k} \leq x < x_{1}^{*} \\ \varphi_{l}^{*}(x) & \text{if } x_{l}^{*} \leq x < x_{l+1}^{*} \\ \varphi_{L}^{*}(x) & \text{if } x_{l}^{*} \leq x < x_{k+1} \end{cases}$$

with φ_I^* 's quintic splines such that:

$$\varphi_{I}^{*}(x_{I}^{*}) = y_{I}^{*}, \quad (\varphi_{I}^{*})'(x_{I}^{*}) = s_{I}^{*}, \quad (\varphi_{I}^{*})''(x_{I}^{*}) = a_{I}^{*}$$

$$\varphi_l^*(x_{l+1}^*) = y_{l+1}^*, \quad (\varphi_l^*)'(x_{l+1}^*) = s_{l+1}^*, \quad (\varphi_l^*)''(x_{l+1}^*) = a_{l+1}^*$$

+ boundary constraints at x_k and x_{k+1}

 $\rightarrow~y_{l}^{*},~s_{l}^{*},~a_{l}^{*}~(1\leq l\leq L)$ parameters to be adjusted

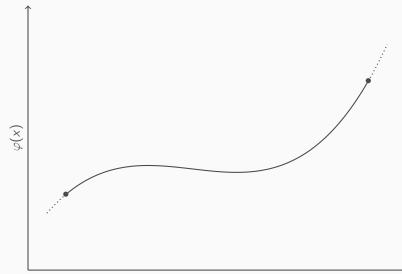
Set y_l^{*}, s_l^{*}, a_l^{*} to minimize the L² distance to unconstrained estimate \$\u03c6\$ subject to positivity constraints:

$$\min_{\substack{y_l^*,s_l^*,a_l^*\\1\leq l\leq L}}\int_{x_k}^{x_{k+1}} (\hat{\varphi}_k(x) - \tilde{\varphi}_k(x))^2 \mathrm{d}x$$

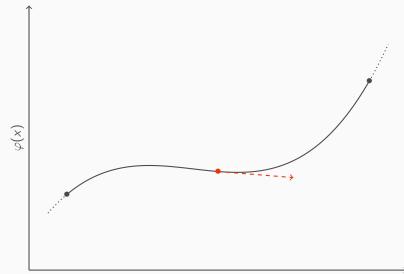
subject to:

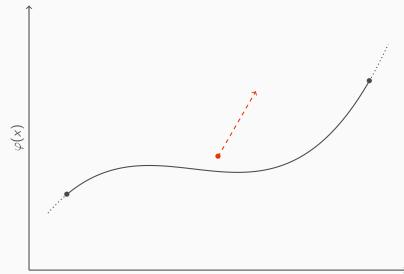
$$b_i^l \ge 0 \quad (0 \le i \le 8, \ 0 \le l \le L)$$

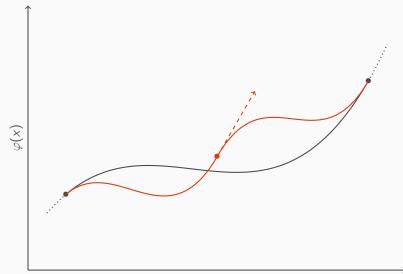
Making sure the quantiles are increasing

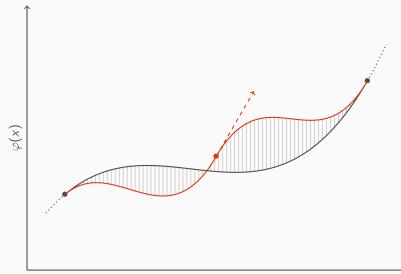


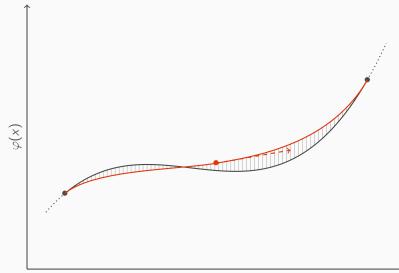
Making sure the quantiles are increasing





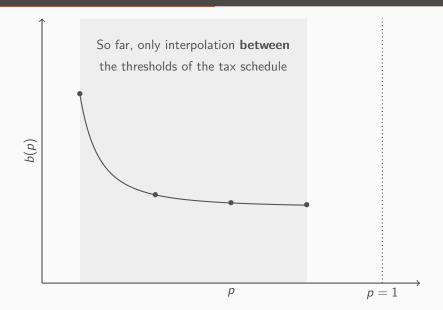




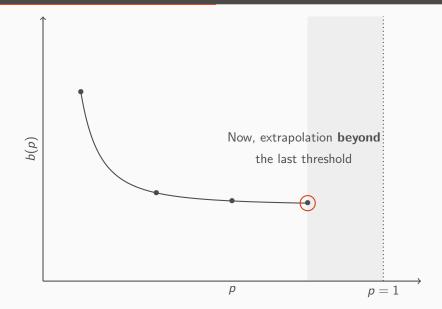


Extrapolation Beyond the Last Threshold

Extrapolation beyond the last threshold



Extrapolation beyond the last threshold



Extrapolation beyond the last threshold (I)

• Generalized Pareto distribution

$$\mathbb{P}(X \le x) = GPD_{\mu,\sigma,\xi}(x) = \begin{cases} 1 - \left(1 + \xi \frac{x-\mu}{\sigma}\right)^{-1/\xi} & \text{for } \xi \neq 0\\ 1 - e^{-(x-\mu)/\sigma} & \text{for } \xi = 0 \end{cases}$$

• Asymptotic Pareto coefficient:

$$\lim_{p\to 1} b(p) = 1/(1-\xi)$$

- \rightarrow If $\mu\xi \sigma = 0$, strict power law
- ightarrow If $\mu\xi \sigma >$ 0 (resp. <), b(p) converges from below (resp. above)
- Assume that the distribution follows a GPD for $p > p_K$
- Three parameters, identified using:
 - 1. last threshold
 - 2. last inverted Pareto coefficient
 - 3. differentiability condition at the jointure

Empirical Test

Method M1: Piecewise constant b(p)

- Assume b(p) constant within each bracket
- Not entirely consistent with the input data
- Not always self-consistent

See Piketty (2001), Piketty and Saez (2003)

Method M2: Piecewise Pareto distribution

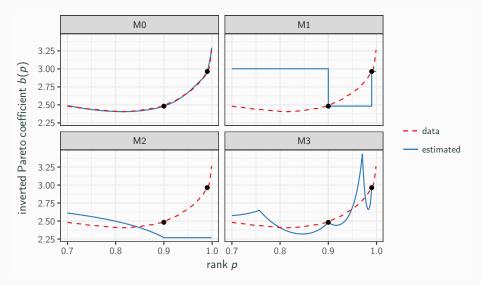
- Use $\log(1 F(x)) = A B \log(x)$ within each bracket
- Only use threshold information, not shares

See Kuznet (1953), Feenberg and Poterba (1992)

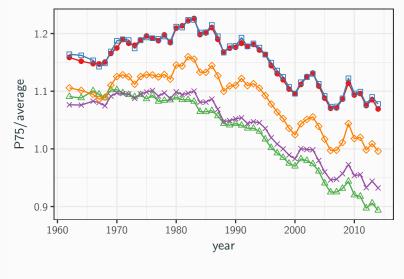
Method M3: Mean-split histogram

- Divide each bracket in two parts
- Define a uniform distribution on each part
- The breakpoint is the mean income inside the bracket

- Data from France and the United States coming from exhaustive or quasi-exhaustive micro-data:
 - France: Garbinti, Goupille-Lebret and Piketty (2016)
 - United States: Piketty, Saez and Zucman (2016)
- Create a tabulation *p* = 10%, 50%, 90%, 99%
- Compare estimated and actual value

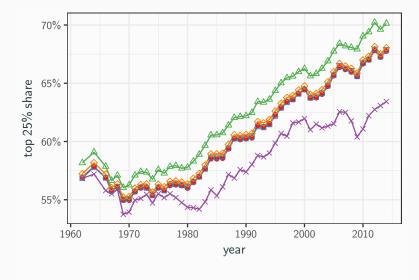


U.S. pre-tax national income, P75/average



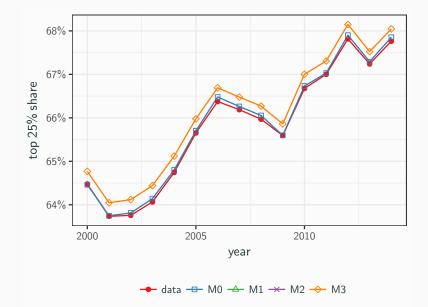
- data - M0 - M1 - M2 + M3

U.S. pre-tax national income, top 25% share



← data — M0 → M1 → M2 → M3

U.S. pre-tax national income, top 25% share (2000–2014)



		mean percentage gap between estimated and observed values				
		M0	M1	M2	M3	
	Top 70% share	0.059%	2.3%	6.4%	0.054%	
	Top 70% share	(ref.)	(×38)	(×109)	(×0.92)	
	Top 25% share	0.093%	3%	3.8%	0.54%	
	Top 25% share	(ref.)	(×32)	(×41)	(×5.8)	
	Tan E0/ alassa	0.058%	0.84%	4.4%	0.83%	
United States	Top 5% share	(ref.)	(×14)	(×76)	(×14)	
(1962-2014)	D20 /	0.43%	55%	29%	1.4%	
	P30/average	(ref.)	(×125)	(×67)	(×3.3)	
	D75 /	0.32%	11%	9.9%	5.8%	
	P75/average	(ref.)	(×35)	(×31)	(×18)	
	D05 /	0.3%	4.4%	3.6%	1.3%	
	P95/average	(ref.)	(×15)	(×12)	(×4.5)	

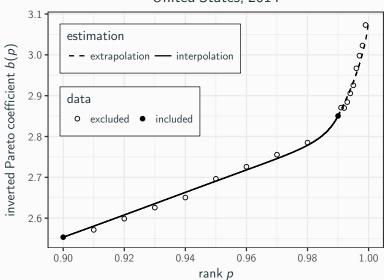
		mean percentage gap between estimated and observed values				
		M0	M1	M2	M3	
	Top 70% share	0.059%	2.3%	6.4%	0.054%	
	Top 70% share	(ref.)	(×38)	(×109)	(×0.92)	
	T 25%	0.093%	3%	3.8%	0.54%	
	Top 25% share	(ref.)	(×32)	(×41)	(×5.8)	
	Tan E0/ alassa	0.058%	0.84%	4.4%	0.83%	
United States	Top 5% share	(ref.)	(×14)	(×76)	(×14)	
(1962-2014)	D20 /	0.43%	55%	29%	1.4%	
	P30/average	(ref.)	(×125)	(×67)	(×3.3)	
	D75 /	0.32%	11%	9.9%	5.8%	
	P75/average	(ref.)	(×35)	(×31)	(×18)	
	D05 /	0.3%	4.4%	3.6%	1.3%	
	P95/average	(ref.)	(×15)	(×12)	(×4.5)	

		mean percentage gap between estimated and observed values				
		M0	M1	M2	M3	
	Top 70% share	0.059%	2.3%	6.4%	0.054%	
	Top 70% share	(ref.)	(×38)	(×109)	(×0.92)	
	Tap 25% share	0.093%	3%	3.8%	0.54%	
	Top 25% share	(ref.)	(×32)	(×41)	(×5.8)	
	Tan E0/ alassa	0.058%	0.84%	4.4%	0.83%	
United States	Top 5% share	(ref.)	(×14)	(×76)	(×14)	
(1962–2014)	D20 /autora ga	0.43%	55%	29%	1.4%	
	P30/average	(ref.)	(×125)	(×67)	(×3.3)	
	D75 /	0.32%	11%	9.9%	5.8%	
	P75/average	(ref.)	(×35)	(×31)	(×18)	
	D05 /	0.3%	4.4%	3.6%	1.3%	
	P95/average	(ref.)	(×15)	(×12)	(×4.5)	

		mean percentage gap between estimated and observed values				
		M0	M1	M2	M3	
	Top 70% share	0.059%	2.3%	6.4%	0.054%	
	Top 70% share	(ref.)	(×38)	(×109)	(×0.92)	
	T 25%	0.093%	3%	3.8%	0.54%	
	Top 25% share	(ref.)	(×32)	(×41)	(×5.8)	
	T E0/	0.058%	0.84%	4.4%	0.83%	
United States	Top 5% share	(ref.)	(×14)	(×76)	(×14)	
(1962-2014)	D20 /	0.43%	55%	29%	1.4%	
	P30/average	(ref.)	(×125)	(×67)	(×3.3)	
	D75 /	0.32%	11%	9.9%	5.8%	
	P75/average	(ref.)	(×35)	(×31)	(×18)	
	D05 /	0.3%	4.4%	3.6%	1.3%	
	P95/average	(ref.)	(×15)	(×12)	(×4.5)	

		mean percentage gap between estimated and observed values				
		M0	M1	M2	M3	
	Top 70% share	0.059%	2.3%	6.4%	0.054%	
	Top 70% share	(ref.)	(×38)	(×109)	(×0.92)	
	Top 25% share	0.093%	3%	3.8%	0.54%	
	TOP 25% Share	(ref.)	(×32)	(×41)	(×5.8)	
	Top 5% share	0.058%	0.84%	4.4%	0.83%	
United States	Top 5% snare	(ref.)	(×14)	(×76)	(×14)	
(1962–2014)	D20 /autora ma	0.43%	55%	29%	1.4%	
	P30/average	(ref.)	(×125)	(×67)	(×3.3)	
	D75 /	0.32%	11%	9.9%	5.8%	
	P75/average	(ref.)	(×35)	(×31)	(×18)	
	D05 /	0.3%	4.4%	3.6%	1.3%	
	P95/average	(ref.)	(×15)	(×12)	(×4.5)	

Extrapolation: Generalized Pareto curve



United States, 2014

$\rightarrow\,$ Estimation of the top 1% from the top 10% and the top 5%

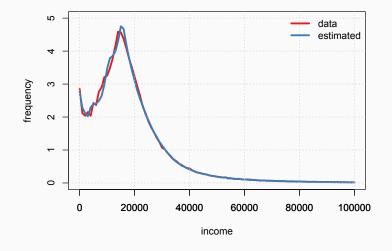
		mean percentage gap between estimated and observed values				
		M0 M1 M2				
	Top 1% share	0.78%	5.2%	40%		
United States	TOP 170 Share	(ref.)	(×6.7)	(×52)		
(1962–2014)		1.8%	8.4%	13%		
	P99/average	(ref.)	(×4.7)	(×7.2)		

What precision can we expect using subsamples of the data?

- U.S. distribution of pre-tax national income
- Mean percentage gap on the top 5% share:
 - 1. Generalized Pareto interpolation: 0.058%
 - (tabulation: p = 10%, 50%, 90%, 99%)
 - 2. Sample of 10^7 out of 10^8 : 0.44%

	mean percentage gap between estimated and observed values for a survey with simple random sampling and sample size n out of 10^8						
	$n = 10^{3}$	$n = 10^{4}$	$n = 10^{5}$	$n = 10^{6}$	$n = 10^{7}$	$n = 10^{8}$	
Top 5% share	13.40%	6.68%	3.34%	1.34%	0.44%	0%	
Top 1% share	27.54%	14.51%	7.39%	2.98%	0.97%	0%	
Top 0.1% share	51.25%	33.08%	17.89%	7.41%	2.43%	0%	

France pre-tax national income, 2006: Density comparison



(tabulation: p = 10%, 30%, 50%, 90%, 99%)

Error Estimation

- Two possible definitions of "the error"
 - 1. the error with respect to the actual population value
 - $\rightarrow\,$ we try to estimate the income/wealth in the population, approximated by a continuous distribution
 - 2. the error with respect to the underlying statistical model
 - $\rightarrow\,$ we only observe the realization of some underlying statistical model that we try to estimate
- In practice, sampling error and approximation error are negligible
 ⇒ errors 1 and 2 ≃ same magnitude
- To fix ideas, focus on the second kind of error

- What if the population was infinite?
 - $\rightarrow\,$ there would still be an error because the actual distribution doesn't match our interpolation exactly
 - \rightarrow misspecification error
- What if the actual distribution matched the functional forms we use to interpolate?
 - $\rightarrow\,$ there would still be an error due to sampling variability
 - $\rightarrow\,$ sampling error
- Total error = misspecification error + sampling error
- For simplicity, focus on unconstrained estimation

- 1. Finite variance case:
 - Standard approach (CLT-type results + delta method)
 - Asymptotic normality
- 2. Infinite variance case:
 - Generalized CLT (Gnedenko and Kolmogorov, 1968)
 - Convergence to a stable distribution
- $\Rightarrow\,$ negligible sampling error in both cases

• Explicit expression for this error (Peano kernel theorem)

misspecification error =
$$\int_{x_1}^{x_K} \varepsilon(x, t) \varphi^{\prime\prime\prime}(t) \mathrm{d}t$$

- Depends on two elements:
 - 1. the interpolation percentiles
 - 2. $\varphi^{\prime\prime\prime}$
- $\varphi^{\prime\prime\prime} \simeq {\rm residual}$
 - $\rightarrow\,$ captures all the features of the distribution not accounted for by the interpolation method

- Estimate $\varphi^{\prime\prime\prime}$ when we have access to micro-data
- Plug-in these estimates in the error formula to:
 - 1. Get bounds on the error in the general case
 - Solve the inverse problem: how to place thresholds optimally?
 optimal thresholds

Conclusion

- Generalized Pareto curves
 - 1. characterize and visualize the distributions of income or wealth
 - 2. estimate those distributions
- Generalized Pareto interpolation
 - 1. largely outperforms commonly used methods
 - 2. method applied to construct the World Inequality Database
 - 3. R package available:
 - wid.world/gpinter
- What mechanisms?
 - 1. random growth models? can't account for the increasing inequality at the top
 - 2. simple deviations from them: the very top experiences higher growth and/or more risk
 - $\Rightarrow\,$ the processes generating income and wealth distributions are not fully scale invariant

Thank you!

Additional slides

• For some α , write 1 - F(x) as:

$$1 - F(x) = \mathbb{P}\{X > x\} = L(x)x^{-\alpha}$$

• X is an **asymptotic** power law if L is **slowly varying**:

$$\forall \lambda > 0$$
 $\lim_{x \to +\infty} \frac{L(\lambda x)}{L(x)} = 1$

• Includes cases where $L(x) \rightarrow \text{constant}$, but also (say) $L(x) = (\log x)^{\beta}, \ \beta \in \mathbb{R}.$

▶ back

• Otherwise, 1 - F may be **rapidly varying**, meaning:

$$\forall \lambda > 1$$
 $\lim_{x \to +\infty} \frac{1 - F(\lambda x)}{1 - F(x)} = 0$

- That corresponds to thin tailed distributions:
 - Normal
 - Log-normal
 - Exponential
 - ...

▶ back

Category	Examples	b(p) behavior
Power laws	Pareto Student's <i>t</i> Dagum	$\lim_{p\to 1} b(p) > 1$
Thin tails	Normal Log-normal Exponential	$\lim_{p\to 1} b(p) = 1$
Pathological cases	none	oscillates indefinitely (no convergence)

back

	3 brackets	4 brackets	5 brackets	6 brackets	7 brackets
	10.0%	10.0%	10.0%	10.0%	10.0%
	68.7%	53.4%	43.0%	36.8%	32.6%
	95.2%	83.4%	70.4%	60.7%	53.3%
optimal placement	99.9%	97.1%	89.3%	80.2%	71.8%
of thresholds		99.9%	98.0%	93.1%	86.2%
			99.9%	98.6%	95.4%
				99.9%	98.9%
					99.9%
maximum relative error on top shares	0.91%	0.32%	0.14%	0.08%	0.05%

▶ back